GUIDED PRACTICE

1. Vocabulary Describe the relationship between a parabola and its directrix.

SEE EXAMPLE
SEE EXAMPLE 2 Write the equation in standard form for each parabola.
Use the distance formula to find the equation of a parabola with the given focus and directrix.
2. $F(0,-5), y=5$
3. $F(7,0), x=-7$
4. $F(-3,0), x=6$
p. 752
.

6.

7.

8. vertex $(0,0)$, focus $(0,1)$
9. vertex $(0,0)$, focus $(-8,0)$

SEE EXAMPLE 3
p. 753

Find the vertex, value of p, axis of symmetry, focus, and directrix of each parabola, and then graph.
10. $y=\frac{1}{32}(x+2)^{2}$
11. $x=\frac{1}{24}(y-4)^{2}$
12. $y+1=\frac{1}{16}(x-2)^{2}$

SEE EXAMPLE 4
p. 754

Independent Practice For Exercises	See Example
$14-16$	1
$17-21$	2
$22-24$	3
25	4

Extra Practice

Skills Practice p. S23
Application Practice p. S41

PRACTICE AND PROBLEM SOLVING

Use the distance formula to find the equation of a parabola with the given focus and directrix.
14. $F(0,3), y=-5$
15. $F(-2,0), x=8$
16. $F(7,0), x=-1$

Write the equation in standard form for each parabola.
17.

18.

19.

20. vertex $(0,0)$, focus $\left(\frac{1}{2}, 0\right)$
21. vertex $(0,0)$, focus $(0,-6)$

Find the vertex, value of p, axis of symmetry, focus, and directrix of each parabola, and then graph.
22. $y=\frac{1}{8}(x-1)^{2}$
23. $x=2 y^{2}+1$
24. $x-2=\frac{1}{2}(y+1)^{2}$

