GUIDED PRACTICE

1. Vocabulary How can you recognize a tangent of a circle?

SEE EXAMPLE 1 Write the equation of each circle.
p. 729

SEE EXAMPLE 2
p. 730
4.

3. center $(-11,3)$ and radius $r=9$
5.

6. center $(-1,9)$ and containing the point $(2,5)$
7. center $(-2,-5)$ and containing the point $(-10,-20)$

SEE EXAMPLE 3 Depending on its strength, an earthquake can be felt in locations miles away from
p. 730 the epicenter.
8. Multi-Step Suppose that the epicenter of the earthquake is located at the point $(5,-2)$ and is felt up to 10 mi away. Use the equation of a circle to find the locations that are affected.
9. Multi-Step Suppose that the epicenter of the earthquake is located at the point $(-5,-7)$ and is felt up to 8 mi away. Use the equation of a circle to find the locations that are affected.

SEE EXAMPLE 4 Multi-Step Write the equation of the line that is tangent to each circle at the given point.
10. $x^{2}+y^{2}=100 ;(8,6)$
11. $(x+6)^{2}+(y+4)^{2}=25 ;(-9,-8)$

PRACTICE AND PROBLEM SOLVING

Independent Practice For Exercises	
$12-13$	See Example
$14-17$	2
$18-19$	3
$20-21$	4

Extra Practice

Skills Practice p. S22
Application Practice p. S41

Write the equation of each circle.
12. center $(3,2)$ and radius $r=7$
14.

13. center $(5,1)$ and radius $r=10$
15.

16. center $(12,-3)$ and containing the point $(-12,7)$
17. center $(-6,-4)$ and containing the point $(-2,-1)$

