Logarithms and inverse functions 1.30.17 23.1,23.2

Find the inverse of a function

To find the inverse function, swap the x and y and solve for y.

I do:

Find the inverse function of

$$y = 2x + 3$$

Original Function	y = 2x + 3
Swap "x" and "y"	
Solve for y	

We Do:

Find the inverse function of

$$y = \frac{1}{3}x - 10$$

Original Function	$y = \frac{1}{3}x - 10$
Swap "x" and "y"	
Solve for y	
J	

Find the inverse function of

$$y = \frac{x-3}{2}$$

Original Function	
Swap "x" and "y"	
Solve for y	

You do: Left Talk, Right Write On your Whiteboards with your partner

- 1) Find the inverse function of $y = \frac{2x 3}{4}$
- 2) Find the inverse function of y = 4(x + 1)

A *Logarithm* is the exponent to which a specified base is raised to obtain a given value.

Examples

$$2^3 = 8$$
 $\log_2 8 = 3$
 $5^4 = 625$ $\log_5 625 = 4$
Exponential Logarithmic

We Try:

Write each exponential equation in logarithmic form.

1)
$$4^3 = 64$$

$$2) 3^4 = 81$$

$$3) 2^5 = 32$$

You Try with your partner on the whiteboards:

1)
$$5^2 = 25$$

1)
$$5^2 = 25$$

2) $3^3 = 27$

Exponential Equation Logarithmic Equation $b > 0, b \neq 1$

Write each logarithmic equation in exponential form

We Try:

- 1) $\log_7 343 = 3$
- 2) $\log_4 64 = 3$

$$\log_4 4^3 = 3$$

You Try with your partners on whiteboards:

- 1) $\log_4 16 = 2$
- 2) $log_2 1 = 0$

Special Properties of Logarithms

For any base b such that b > 0 and $b \neq 1$,

LOGARITHMIC FORM	EXPONENTIAL FORM	EXAMPLE
Logarithm of Base b		
$\log_b b = 1$	$b^1 = b$	$log_{10}10 = 1$ $10^1 = 10$
Logarithm of 1		
$\log_b 1 = 0$	b ⁰ = 1	$log_{10}1 = 0$ $10^0 = 1$

A logarithm with base 10 is called a <u>Common</u>
<u>Logarithm.</u> If there is no base, you can assume it to be 10.

EXAMPLE: $log 5 = log_{10} 5$

I Try:

Evaluate by using mental math.

$log_2 1$

Setup by solving for x	$\log_2 1 = x$
Write in exponential	$2^{x} = 1$
form	
Solve for x	$2^0 = 1, x = 0$

We Try:

Evaluate by using mental math.

1) log₆ 36

Setup by solving for x	
Write in exponential	
form	
Solve for x	

You Try with your partner on a whiteboard. Odd Talk, Even Write Evaluate by using mental math.

1) log₃ 81

2) log₄ 4

Please take out a piece of paper. Please put your name on it. Diagnostic Quiz Exit Slip.

1) Evaluate $\log_4 64 = x$

- 2) Find the inverse of $y = \frac{4x-2}{5}$
- 3) Express as a single logarithm. $log_8 4 + log_8 16$
- 4) Solve for x $8^x = 2^{x+6}$
- 5) Solve for x $\log_3(x-5) = 2$