

Radians and Degrees 13.3

Radian is a unit of angle measure based on arc length. In Arc is an unbroken part of a circle.

a central angle, θ , in a circle of radius r intercepts an arc of angth r, then the measure of θ is defined as 1 radian.

he circumference of a circle of radius r is $2\pi r$. 60° is equal to 2π when r=1.

Converting Angle Measures

DEGREES TO RADIANS	RADIANS TO DEGREES
Multiply the number of degrees by $\left(\frac{\pi \text{ radians}}{180^{\circ}}\right)$.	Multiply the number of radians by $\left(\frac{180^{\circ}}{\pi \text{ radians}}\right)$.

do

overt the degree to radians.

$$-45^{\circ} \left(\frac{\pi \ radians}{180^{\circ}}\right) = -\frac{\pi}{4} \ radians$$

We do:

Convert the degree to radians.

ou do on your whiteboards: ven Talk, Odd Write.

onvert the degree to radians.

- 1) -90°
- 2) 150°

onverting radians to degrees. do.

1)
$$\frac{5\pi}{6}$$
 radians

$$\frac{5\pi}{6}$$
 radians $\left(\frac{180^{\circ}}{\pi radians}\right) = 150^{\circ}$

We do

Convert radians to degrees.

2) 4π radians

3)
$$\frac{2\pi}{9}$$
 radians

You do on whiteboards Even Write Odd Talk

Convert Radians to Degrees.

1)
$$\frac{2\pi}{5}$$
 radians
2) $-\frac{\pi}{9}$ radians

2)
$$-\frac{\pi}{9}$$
 radians

do:

ind a positive and a negative angle that is coterminal with the ngle.

1)
$$\theta = \frac{\pi}{3}$$

Priginal radian	$\theta = \frac{\pi}{3}$
$dd \ 2\pi$ until there is a positive ngle.	$\frac{\pi}{3} + 2\pi$
implify	$\frac{\pi}{3} + \frac{6\pi}{3} = \frac{7\pi}{3}$
ubtract 2π until there is a egative angle.	$\frac{\pi}{3}-2\pi$
implify	$\frac{\pi}{3} - \frac{6\pi}{3} = -\frac{5\pi}{3}$

Ve do:

ind a positive and a negative angle that is coterminal with the ngle.

$$2) \theta = \frac{\pi}{6}$$

riginal radian	
and 2π until there is a positive ngle.	
implify	
ubtract 2π until there is a egative angle.	
implify	

ou do with your partner on whiteboards.

ven Talk, odd write.

ind a positive and a negative angle that is coterminal with the ngle.

1)
$$\theta = -\frac{\pi}{4}$$

Ising radians on the calculator.

Take sure you are in the right mode.

- 1) Sin 60
- 2) $\sin\left(\frac{\pi}{9}\right)$

losure xplain how to find coterminal angles for radians. xplain how to find coterminal angles for degrees. hink of 2 coterminal angles to $\frac{\pi}{3}$. hink 2 coterminal angles to 100°.