Warm-up January 16th 2015 10.4 Hyperbolas

Sketch the lines.

$$1) \quad y = \frac{2}{3}x$$

2)
$$y = -\frac{4}{3}x$$

Where is the center?

3)
$$(x-2)^2 + (y-5)^2 = 4$$

4)
$$\frac{(y-3)^2}{16} + \frac{(x-1)^2}{9} = 1$$

Hyperbolas 10.4

- A *hyperbola* is the set of points P in a plane such that the difference of the distances from P to the foci is constant.
- A hyperbola is made up of two branches.
- The **transverse axis** of symmetry contains the *vertices and foci.*
- The **conjugate axis** of symmetry separates the two branches of the hyperbola and contains the *co-vertices*.

tandard Form for	the Equation of a H	lyperbola Center at (0, 0
TRANSVERSE AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
Vertices	(a, 0), (-a, 0)	(0, <mark>a</mark>), (0, -a)
Foci	(c, 0), (-c, 0)	(0, c), (0, -c)
Co-vertices	(0, b), (0, -b)	(b, 0), (-b, 0)
Asymptotes	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$

Pg. 745

Question!

For ellipses, are $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ and $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ the same?

What about for hyperbolas?

Are
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
 and $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ the same?

What do you remember about the "a" for ellipses

I do.

$$\frac{y^2}{4} - \frac{x^2}{9} = 1$$

Identify form of	
the equation	Vertical
Identify "a" and	$a^2 = 4$, $a = 2$
"b"	$b^2 = 9, \qquad b = 3$
Identify the	Center: (0,0)
Center, vertices,	Vertices: (0,2),(0,-2)
and co-vertices	Co-Vertices:(3,0),(-3,0)
Identify the	$\frac{2}{x}$
Asymptotes:	$y = \pm \frac{1}{3}x$
Vertical	
$y = \pm \frac{a}{b}x$	
Horizontal	
$y = \pm \frac{b}{a} x$	

$$\frac{x^2}{25} - \frac{y^2}{1} = 1$$

Identify form of the	
equation	
Identify the Center,	Center:
vertices, and co-vertices	Vertices:
	Co-Vertices:
Identify a and b	a=
	b=
Identify the Asymptotes	

$$\frac{y^2}{4} - \frac{x^2}{25} = 1$$

Identify form of the	
equation	
Identify the Center,	Center:
vertices, and co-	Vertices:
vertices	Co-Vertices:
Identify a and b	a=
	b=
Identify the	
Asymptotes	

You do with a partner in your notes.
Odd rows talk, Even rows write.
Find the vertices, co-vertices, and asymptotes of each

$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

hyperbola, and then graph.

Identify form of the	
equation	
Identify the Center,	Center:
vertices, and co-	V:
vertices	CV:
Identify a and b	a=
	b=
Identify the	
Asymptotes	
Vertical $y = \pm \frac{a}{b} x$	
Horizontal $y = \pm \frac{b}{a}x$	

You do with a partner in your notes.

Even rows talk, Odd rows write.

$$\frac{y^2}{4} - \frac{x^2}{1} = 1$$

Identify form of the	
equation	
Identify the Center,	C:
vertices, and co-	V:
vertices	CV:
Identify a and b	a=
	b=
Identify the	
Asymptotes	
Vertical $y = \pm \frac{a}{b}x$	
Horizontal	
$y = \pm \frac{b}{a}x$	

Adding in H and K

What does H and K do again? Compare and contrast

$$\frac{(x)^2}{4} - \frac{(y)^2}{9} = 1$$

and

$$\frac{(x-2)^2}{4} - \frac{(y+1)^2}{9} = 1$$

TRANSVERSE AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Vertices	(h+a,k),(h-a,k)	(h, k + a), (h, k - a)
Foci	(h+c,k),(h-c,k)	(h, k + c), (h, k - c)
Co-vertices	(h, k + b), (h, k - b)	(h+b,k),(h-b,k)
Asymptotes	$y-k=\pm \frac{b}{a}(x-h)$	$y - k = \pm \frac{a}{b}(x - h)$

$$\frac{(x-2)^2}{4} - \frac{(y+1)^2}{9} = 1$$

Identify form of the equation	Horizontal
Identify a and b	$a^2 = 4, a = 2$ $b^2 = 9, b = 3$
Identify the center, vertices, co-vertices.	Center: (2,-1) Vertices (2+2,-1),(2-2,-1) (4,-1),(0,-1) Co-Vertices: (2,-1+3), (2,-1-3) (2,2),(2,-4)
Identify the Asymptotes Vertical: $y - k = \pm \frac{a}{b} (x - h)$ Horizontal: $y - k = \pm \frac{b}{a} (x - h)$	$y+1=\pm \frac{3}{2}(x-2)$

$$\frac{(y+1)^2}{16} - \frac{(x+2)^2}{9} = 1$$

Identify form of the equation	
Identify a and b	a= b=
Identify the center,	Center:
vertices, co-vertices.	Vertices:
	Co-vertices:
Identify the Asymptotes	
Vertical: $y - k = \pm \frac{a}{b} (x -$	
(h)	
Horizontal: $y - k =$	
$\pm \frac{b}{a} (x - h)$	

$$\frac{(x)^2}{4} - \frac{(y-3)^2}{1} = 1$$

Identify form of the equation	
Identify a and b	a= b=
Identify the center, vertices, co-vertices.	Center: V: CV:
Identify the Asymptotes Vertical: $y - k =$ $\pm \frac{a}{b} (x - h)$ Horizontal: $y - k =$ $\pm \frac{b}{a} (x - h)$	

You do with your partners in your notes. Even rows talk, odd rows write.

$$\frac{(x-1)^2}{4} - \frac{(y-2)^2}{9} = 1$$

Identify form of the equation	
Identify a and b	a= b=
Identify the center, vertices, covertices.	Center: Vertices: Co-vertices:
Identify the Asymptotes Vertical: $y - k = \pm \frac{a}{b} (x - h)$ Horizontal: $y - k = \pm \frac{b}{a} (x - h)$	

Closure:

Compare and Contrast the differences between a Hyperbola and an Ellipse equation and graph. Write at least 3 aspects that are similar and 3 that are different. Be ready to share with the class

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{h^2} = 1$$

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$$

True or false?

Discuss with your partner about the statements. Are they true or false? Provide reasons for your answer.

$$\frac{(y+2)^2}{9} - \frac{(x-3)^2}{4} = 1$$

This is an equation for an ellipse.

This is horizontal.

$$a = 3$$
.

$$b = 4$$
.

The center is (-2,3).